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EAGE Objectives

e Build the case that fractures associated with faulting in the subsurface
can be defined at the scale for commercial petroleum exploration and
development activities.

» Explore what level of certainty can be achieved:to define seal/leak
mechanisms through model calibration of faulted multi-pay fields to best
match the water and hydrocarbon distribution and column heights in the
fields.

 Demonstrate that host, damage-zone and fault core boundary and matrix
and fracture properties can be defined and mapped (with an adequate
data set).
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Method Overview

Hanging wall core/damage zone

| > s with multple slip surfaces and
To address the fault seal problem, this = : NG o vzvrzabln;ﬁr:;ftsriépas:éca:;sei:ed i

method considers all components of fault g = SaE== 7 o e
development models, (Caine et al.,1996, |+ . : . —
Childs et al 2009)

We quantitatively differentiate between successful and failed seals;
* in juxtaposition

= in fault damage zones (DZ) (small faults and fractures) e Fault core clay smear. _

» in fault rock (gouges, cataclasites and smears) Y| cementation zones, e . I

» and with consideration of through-going fault slip surfaces e, fractures and slip surfaces o S Fractured

claystone footwall
damage zone

Components of the method,;

= 1 Seal quality algorithm (Seal Index)
Used to identify brittle (potentially leaking) and ductile seals.

= 2 Empirical lithologic data. Boundaries between core, damage zone and host rocks are often
Effective intra-seal lithologic composition ranges differ between difficult to define. In addition boundaries between smear and gouge
upthrown and downthrown faulted rocks are transitional

= 3 Permeability and threshold models of each host, damage-zone and fault rock component.
Providing limits on hydrocarbon column heights.

All components are integrated into a 3D model where a range of possible fault sealing/leaking mechanisms are tested in
calibration to faulted fields. No assumption on seal/leak mechanisms are made.

Calibration level and variance ranges are the basis for forward modelling.




1 Seal quality Index - differentiating plastic from brittle seals
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Foot-wall ( lith 2 frac)

EAGE

2 Empirical lithologic data

Hydrocarbon trapping, hanging-wall and foot-wall fault trap elements have different
tolerance levels for each non-sealing lithology component (sand, carbonate, silt and coal).

WORKING FOOTWALL SEALS - LITHOLOGY COMPONENT

WORKING HANGINGWALL SEALS LITHOLOGY COMPONENT
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Diagrammatic illustration of variance in contingent
seal responses in hanging and foot wall to faulting.

Good seal & Failed seal

X

It is postulated that as hanging-wall damage zone rocks often show higher deformation, there is reduced tolerance to non-
sealing lithology components in seals. Non-sealing lithology proportion also controls model effective smear extent.

Empirical non-sealing lithology limits are used as an independent differentiating criteria in complex lithology seal intervals.




3 Seal permeability modelling

Sperrevik et al.,2002 Host & Tt
fault rock match to NMR data

Host rock function e

Fault rock function
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There is a progressive reduction in permeability with increasing
depth and depth of faulting for different fault rock types

The permeability function developed is based on the
models of Sperrevik et al.,2002, and Revil and Cathles,1999.

The Sperrevik et. al. model was the first to quantify the Vclay
v permeability relationship with maximum burial depth for host
and depth of faulting for fault rocks (data used- Vclay <40%).

Revil and Cathles,1999 demonstrated that in clayey sands,
permeability reduces as Vclay increases up to about 0.4, at
this point sand pore volume is theoretically filled with clay. At
higher Vclay permeability increases.

Sands in a clay matrix both displace the permeable clay and
cause stress concentration between grains in compaction
reducing clay rock permeability. Both these factors reduce at
higher Vclay.

Revil and Cathles,1999

Quantiseal combined model
(host and fault rock)
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West Tuna field Seal model calibration example - setting
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West Tuna W31 well, interbedded sands,
EAGE coals and claystone. Fault throw range from
seismic, pressure data confirms hydrocarbon
columns & max stress is near horizontal.

3 seal models tested

Upthrown block  |Downth block Upthrown block  |Downth block . . ere
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A G Right Pty SRR (8 sl - B = Right el o i e b i | ke el e o b C smear. Best match
2 JUX&BPOSIUOH only - every | Differentiated Juxtaposition. | [T e

claystone seals. Poor match [

Good match of position only [ ] T
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West Tuna field Seal model calibration example

Why is this happening?

Seal interval analysis shows that the poorer seals
(lower Seal Index) have higher Young’s Modulus
and lower Poisson’s Ratio values consistent with
more brittle rocks, and higher fracture potential.

The X axis shows the Seal Index value. A model hydrocarbon column- (light green) is generated when
seals are in a trapping configuration and seal index minimum values are exceeded (brown). Poor
seals shown in grey fail to trap and are not barriers within hydrocarbon columns.

Fault throw, seal model, Seal Index cut off values etc. are changed until a
geologically reasonable best fit is achieved.

Differentiating brittleness is key to achieving good field calibration
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West Tuna field Seal model calibration example

Differentiated juxtaposition

EAGE + Smear model (best fit)
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Differentiating brittleness and smear potential is key to achieving good field calibration




(FSGR) model
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ozkurt Ciftci et al 2013). - .

FSGR gouge moves down SGR gouge stays at same
the fault plane at half the depth point with
fault throw due to fault increasing throw-
friction Not possible!

Frictional Shale Gouge Ratio

‘Gouge fault rock is

preserved proportionally at
roughly half the fault throw,
as a result of fault zone
friction.

Effective FSGR gouge
sealing quality is linked to
effective host, foot and
hanging-wall seal matrix
Seal Index values with cut-
off values established from
multiple field calibrations.

At a 41m throw there is a
match of hydrocarbon
positions but not column
heights.

There is also a poor match
with the seismic estimate
of fault throw (fault throw -
23 to 25m).

West Tuna field Seal model calibration example

b Tr

SMEAR: ISGR! A
SEAL PARAMS: Up

DATE:15/08/2019 8:35:55 PM_ PROJECT:West Tuna  PATH: T Tuna.ansi  Track Viewer

The FSGR model generates a differentiated and
attenuated effective gouge consistent with fault
development models

(but is not a best fit model in this field).




Manta field Seal model calibration example
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Wells used; down-thrown Manta-1, upthrown Chimaera-1 e

D Effective seal in fault damage rone

Grey shows seals with low seal index & higher fracture potential.
i_! Ineffiective seal in fault damage rone

= do not form top or cross-fault seals or fault traps and
»= show the same hydrocarbon pressure gradient across them [ tective seos justaposed acrossfaut

(not a barrier in a geologic time frame) [_] Reservoirnterval

fl . ff . i m Madel hydrocarbon column
The best fit seal model is, differentiated seal plus smear, explains Q ™

water sand distribution and hydrocarbon reservoir distribution and L —
column heights. *

Column -2 oil in two sands separated by poor failed damage zone seal ( F grey).
Pressure points in both sands lie on an oil gradient and prove linkage across failed
seal. Effective seal, top and cross-fault (brown) is above top sand.

Same best fit seal model and cut
off parameters for all 50 wells
modelled in the Gippsland Basin




Kangaroo-2 well Santos Basin Brazil — other seal mechanisms - setting

= 8 Separate oil columns Salt flank field with rotated antithetic
= Clay rock fault traps work only faults via addition salt uplift

for thick top seal and KT shale £ RO —

Differentiated Fault Triangle -Poor fault seal
potential below the KT shale

No hi Vclay cross fault seals for
Oil zones shown in Faults A, B or C for the K2
orange on all logs or Maastrichtian oil pools ??
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Fault zone permeability
modelling K-2 well Pal. oil
bearing reservoirs and
underlying KT shale

The permeability function, models clay rock permeability in host
and fault rocks for any depth and depth of faulting for Vclay 0 to 1.0.

EAGE

Function curves for host rocks change with grainsize, sorting and
clay type.

The model is overlain with NMR KSDR data, identifying distinct
separate populations of high Vclay host and fault rock points. There
is a very good model fit to NMR permeability data.

For low Vclay host rocks there is a good fit to the very fine to fine
grained reservoir zones in this well.

No model depth adjustments were required. Uplifted well models are
depth adjusted as deepest permeability values are preserved.

Host and fault rock points can be displayed in depth to
define distribution and thickness of fault rock and damage
zones in wells

Permeability data can then extrapolated across fault planes
for seal and fluid flow modelling in matrix and fracture
permeability systems

Host and Fault rock permeability (mbD)
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Fault zone permeability
modelling K-2 well Pal. oil
bearing reservoirs and
underlying KT shale
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Shear zones are commonly identified in outcrop, often along clay
rich bedding planes. In the subsurface, in-bed shear zones are
very difficult to recognize seismically.

The permeability Vclay model can differentiate between sheared
and unsheared higher Vclay rocks.

Well defined host rock and fault rock trends are seen here at
higher Vclay values.

Top oil column C sheared clay (purple) is a pressure boundary
between the C and B oil columns in a trap that dips at 30 degrees.

The lower thick shale has a number of shear zones (purple). There
is no seismic or dipmeter evidence here for a normal fault.

It is postulated that as bed dip increased with structural growth,
stress was relived through shearing in the weaker shale zones

Shear zone clays have lower permeability and significantly higher
threshold pressures and as such can hold higher hydrocarbon

columns
Shear zones Identified in the well

Fault rock
sheared clays
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Fault zone permeability

modelling K-2 well

| 295\ @) 2 Maastrichtian section

» The permeability model fits the NMR KSDR data,

identifying fault cores and damage zones in the well.

= Location, permeability and thickness of each fault rock
component is defined in the well and fits with dipmeter.

» No empirically based fault core or damage zone
thickness estimates are required if NMR data is

available.

» Higher K, low Vclay coarse sands fit with coarse sand
host model function (orange dashed line).

Data from this analysis is independent of, and
calibrates very well with dipmeter data.

Using these models defines more precisely fault
and host rock element positions, orientation,
widths, and their properties in wells.
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K-2 well Maastrichtian section
Fault A model
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Fault A juxtaposes interbedded
high net argillaceous silt to very

NMR Permeability
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Fault zone permeability modelling
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Gular-1, Gippsland Basin e ——gr—
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_ Gular-1, Gippsland Basin Permeability model 1100m model

Upllft to match model 950m
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= Mid Miocene uplift event- major channeling with eroded thick Hapuku
Subgroup clastics deposited offshore.

» Peak erosion, folding and faulting at shallower depths than present (less
thickness of post Mid Miocene sediments)

Pty As such, Low Vclay clastic fault rock likely faulted at shallow depths

i Poor fit with no
- uplift correction
e v.___- likely to be high perm and fractured (see red ellipse) in fault rock model.
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Host and Faolt rock permeability [miD)
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Uplift story
» Mid Miocene uplift event- major channeling with eroded thick Hapuku Subgroup clastics deposited offshore.

» Peak erosion, folding and faulting at shallower depths than present (less thickness of post Mid Miocene sediments)

» As such, Low Vclay clastic fault rock likely faulted at shallow depths likely to be high perm and fractured (see

red ellipse) in fault rock model.
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Hirm and Fawlt jock permeabsling (mill

: H Function from- An investigation of salt tectonic structural styles
GUIar 1 ’ GlppSIand BaSIn in the Scotian Basin, offshore Atlantic Albertz et al. TECTONICS,
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Conclusions

EAGE

Built a case that fractures associated with
faulting in the subsurface can be defined at
the scale for commercial petroleum
exploration and development activities with a
quantified level of certainty by calibration to
existing fields.

Demonstrated that host, damage-zone and
fault core boundary and matrix and fracture
properties can be defined and mapped (with
an adequate data set).

Applicable to CCUS, Aquifer modelling and
Hydrogen storage applications

A strong quantified basis for developing static
and dynamic models

ACTTON: wanta

» Manta field fault plane permeability model. Showing actual columns outlined
predicted hydrocarbon columns red or green plus water sand distribution.

= Pale yellow shows fault plane higher perm windows.

= Orange shows fractured high Vclay intervals that are not sealing in a geological
time frame and do not generate pressure barriers in hydrocarbon columns over
geologic time.




